Abstract

Understanding of electron-phonon coupling (EPC) in two-dimensional (2D) materials manifesting as phonon renormalization is essential to their possible applications in nanoelectronics. Here we report in situ Raman measurements of electrochemically topgated 2, 3 and 7 layered 2H-MoTe₂ channel based field-effect transistors. While the E_{2g}^{l} and B_{2g} phonon modes exhibit frequency softening and linewidth broadening with hole doping concentration (*p*) up to $\sim 2.3 \times 10^{13}$ /cm², A_{1g} shows relatively small frequency hardening and linewidth sharpening. The dependence of frequency renormalization of the E_{2g}^{I} mode on the number of layers in these 2D crystals confirms that hole doping occurs primarily in the top two layers, in agreement with recent predictions. We present first-principles density functional theory analysis of bilayer MoTe₂ that qualitatively captures our observations, and explain that a relatively stronger coupling of holes with E_{2g}^{l} or B_{2g} modes as compared with the A_{1g} mode originates from the in-plane orbital character and symmetry of the states at valence band maximum. The contrast between the manifestation of EPC in monolayer MoS₂ and those observed here in a few-layered MoTe₂ demonstrates the role of the symmetry of phonons and electronic states in determining the EPC in these isostructural systems.